
 
Introduction to the  

Theory of Computation

Set 8 — Turing Machines / Decidability



What Is an Algorithm?
Intuitively, an algorithm is anything that can 

be simulated by a Turing machine  
(Church-Turing Thesis)

• Many algorithms can be simulated by Turing 
machines

• Inputs can be represented as strings
• Graphs
• Polynomials
• Automata
• Etc.



Example Algorithm
Depth-first walk-through of binary tree

Which nodes do you visit, and in what 
order, when doing a depth-first search?

• Visit each leaf node from left to right
• Recursive algorithm
• Stop after rightmost leaf node has been visited



Binary Tree Depth-First Walkthrough
Start at root
Process left subtree (if one exists)
Process right subtree (if one exists)
Process how?

• Print the node name
• If there is a left subtree then

• Process the left subtree
• Print the node name again

• If there is a right subtree then
• Process the right subtree
• Print the node name again



Example

A

B C

D FE G

IH J

A B D H D B E I E A C F J F C GB



Can a Turing Machine Do This?
Input must be a string (not a tree)

• Can we represent a tree with a string?
• Yes.



String representation of a binary tree

A

B C

D FE G

IH J

A B  C  D E  F  G H  #  #  I  J # # #  ~ 



Can a Turing Machine Do This?

How do we know which node(s) are children 
of the current node?

• The root node is at index 0.
• The children of node at index n are at indices 

2n+1 and 2n+2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A B  C  D E  F  G H  #  #  I  J # # #  ~ 

Input must be a string (not a tree)
• Can we represent a tree with a string?
• Yes



What About the Output?
Need to write out nodes in a particular order

• Can we do this with a TM?
• Yes.  Add output tape
• A TM can move left and right on the input tape 

writing to the output tape whenever 
appropriate

A B  C  D E  F  G H  #  #  I  J # # #  ~ 

A B D H D B E I E B A C F J F C G ~



Describing Turing Machines
From now on, we can describe Turing 
machines algorithmically

M = “On input w
1. …
2. …

…”



Decidability
A language is decidable if some Turing 
machine decides it
๏ Every string in Σ* is either accepted or rejected

Not all languages are decidable
• Not all languages can be decided by a Turing 

machine
• We will see examples of both decidable and 

undecidable languages



Showing a Language Is Decidable
Write a decider that decides it
Must show the decider 

• Halts on all inputs
• Accepts w ⇔ w is in the language

Can use algorithmic description



DFA Acceptance Problem
Consider the language 
ADFA = {<B,w> | B is a DFA that accepts the 

string w}
Theorem:  ADFA is a decidable language
Proof:  Consider the following TM, M
M = “On input string <B,w>, where B is a 

DFA and w is an input to B
1. Simulate B on input w
2. If simulation ends in accept state, accept.  

Otherwise, reject.”



NFA Acceptance Problem
Consider the language 
ANFA = {<B,w> | B is a NFA that accepts the 

string w}
Theorem:  ANFA is a decidable language
Proof:  Consider the following TM, N
N = “On input string <B,w>
1. Convert B to a DFA C
2. Run TM M shown previously on <C,w>
3. If M accepts, accept.  Otherwise, reject.”



RE Acceptance Problem
Consider the language 
AREX = {<R,w> | R is an RE that generates the 

string w}
Theorem:  AREX is a decidable language
Proof:  Consider the following TM, P
P = “On input string <R,w>
1. Convert R to a DFA C (using algorithms 

discussed in class and in texts)
2. Run TM M shown previously on <C,w>
3. If M accepts, accept.  Otherwise, reject.”



Some Decidable Languages
ADFA = {<B,w> | B is a DFA that accepts 

input string w}
ANFA = {<B,w> | B is an NFA that accepts 

input string w}
AREX = {<R,w> | R is a regular expression 

that generates string w}



Emptiness Testing Problem
Consider the language 
EDFA = {<A> | A is a DFA and L(A) = ∅}
Theorem:  EDFA is a decidable language
Proof:  Consider the following TM, T
T = “On input string <A>, where A is a DFA
1. Mark the start state
2. Repeat until no new states get marked

– Mark any state that has a transition coming into it 
from any state already marked

3. If no accept states are marked, accept.  
Otherwise, reject.”



DFA Equivalence Problem
EQDFA = {<A,B> | A and B are DFA’s 

and L(A) = L(B)}
Theorem: EQDFA is a decidable language

Proof:  Consider the following language
(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))



DFA Equivalence Problem

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

L(A) L(B)L(A)
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DFA Equivalence Problem

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))
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DFA Equivalence Problem
EQDFA = {<A,B> | A and B are DFA’s 

and L(A) = L(B)}
Theorem: EQDFA is a decidable language

Proof:  Consider DFA C that accepts  
L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

How do we know such a DFA exists?

If L(C) = ∅, then L(A) = L(B)



DFA Equivalence Problem

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

L(A) L(B)Җ



DFA Equivalence Problem

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

L(A) L(B)Җ



TM That Decides EQDFA

Q = “On input string <A,B>, where A and B 
are DFAs

1. Create DFA C such that 
L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

2. Submit C to Turing machine T that 
decides EDFA

3. If T accepts C, accept.  
Otherwise, reject.”



Some Decidable Languages
ADFA = {<B,w> | B is a DFA that accepts 

input string w}
ANFA = {<B,w> | B is an NFA that accepts 

input string w}
AREX = {<R,w> | R is a regular expression 

that generates string w}
EDFA = {<A> | A is a DFA and L(A) = ∅}
EQDFA = {<A,B> | A and B are DFA’s and 

L(A) = L(B)}



Question
How would we show that the following 
language is decidable?
ALLDFA = {<A> | A is a DFA that recognizes Σ* }



Another Question
Let L be any regular language
How would we show L is decidable?

• Assume L is described using a DFA



Deciders and CFG’s
Consider the following language

ACFG = {<G,w> | G is a CFG that generates 
string w}

Is ACFG decidable?
Problem: 

How can we get a TM to simulate a CFG?
Must be certain CFG tries a finite number of steps!

Solution: Use Chomsky Normal Form



Chomsky Normal Form Review
All rules are of the form

A → BC
A →a
where A, B, and C are any variables;  
B and C cannot be the start variable

S → ε
    is the only ε rule; 
 S is the start variable



How Many Steps to Generate w?
If |w| = 0

1 step

If |w| = n > 0?
2n – 1 steps



TM Simulating ACFG

M = “On input <G>, where G is a CFG
1. Convert G into Chomsky Normal Form
2. If |w| = 0

Ø If there is an  S → ε  rule, accept
Ø Otherwise, reject

3. List all derivations with 2 |w| – 1 steps
Ø If any generate w, accept
Ø Otherwise, reject”



Empty CFG’s
Consider the following language

ECFG = {<G> | G is a CFG and L(G) = ∅}

Theorem: ECFG is decidable

Can we use the TM in ACFG to prove this?
No.  
There are infinitely many possible strings in Σ*

Instead, we need to check if there is any way 
to get from the start variable to some string of 
terminals



Work Backwards
B = “On input <G>, where G is a CFG
1. Mark all terminals
2. Repeat until no new variables are 

marked
Mark any variable A if G has a rule A→U1U2…Uk 
where U1, U2, …, Uk are all marked

✘ If S is marked, reject
✓ Otherwise, accept”



What About EQCFG?

Recall for EQDFA, we considered

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))
Will this work for CFG’s?

No. CFG’s are not closed under 
complementation or intersection

EQCFG is not a decidable language!
We will see this later



Decidability of CFL’s
Theorem:  

Every context-free language L is decidable
Proof: 

For each w, we need to decide whether or 
not w is in L.  Let G be a CFG for L.  This 
problem boils down to ACFG, which we 
showed is decidable.



Relationship of Classes of Languages

Regular Context-
free

Decidable Turing-
recognizable



Language Input

ADFA <D,w>, D is a DFA, w is a string

ANFA <N,w>, N is an NFA, w is a string

AREX <R,w>, R is an RE, w is a string

EDFA <D>,   D is a DFA and L(D) = ∅

EQDFA 

L(R)

<C,D>, C and D are DFA’s and L(C) = L(D) 

R is a regular language

ACFG <G,w>, G is a CFG, w is a string

ECFG <G>,   G is a CFG and L(G) = ∅

L(C) C is a context free language

Languages We Know Are Decidable



Collaborative Exercise — 1
FDFA = {<A> | A is a DFA and L(A) is finite}



Collaborative Exercise — 2
PRIME = { n | n is a prime number}



Collaborative Exercise — 3
CONN = {<G> | G is a connected graph}



Collaborative Exercise — 4
L10DFA = {D | D is a DFA that accepts 

every string w with |w| = 10}



Collaborative Exercise — 5
INTCFG = {<G1, G2, w> | G1 and G2 are CFGs 

and w is accepted by both}



Collaborative Exercise — 6
INTLCFG = L(G1 ∩ G2), where G1 and G2 are CFGs



Decidable Languages
A language is decidable if some Turing 
machine decides it

• Every string in Σ* is either accepted or rejected

Not all languages can be decided by a 
Turing machine



Turing Machine Acceptance Problem
Consider the following language

ATM = {<M,w> | M is a TM that accepts w}

Theorem: ATM is Turing-recognizable

Theorem: ATM is undecidable

Proof: The Universal Turing Machine 
recognizes, but does not decide, ATM



The Universal Turing Machine

U = “On input <M, w>, where M is a TM and 
w is a string:

1. Simulate M on input w
2. If M ever enters its accept state, accept
3. If M ever enters its reject state, reject”



Why Can’t U Decide ATM?

Intuitively, if M never halts on w, 
  then U never halts on <M,w>

This is also known as the halting problem
 Given a TM M and a string w, 

does M halt on input w?
 Undecidable
 We may prove this more rigorously later

 Need some additional tools for proving properties 
of languages

 Undecidable



Given two infinite sets A and B, is there any 
way of determining if |A| = |B| or if |A| > |B|?

Yes!
Functional correspondence can show two 
infinite sets have the same number of 
elements
Diagonalization can show one infinite set 
has more elements than another

Comparing the Size of Infinite Sets



Functional Correspondence
Let f be a function from A to B
f is called one-to-one if …

f(a1) ≠ f(a2) whenever a1 ≠ a2

f is called onto if …
For every b ∈ B, there is some a ∈ A such that 
f(a) = b

f is called a correspondence if it is both 
one‑to‑one and onto

A correspondence is a way to pair elements of 
the two sets



Example — Correspondence
Consider f: ℤ≥0 → P, where 
    ℤ≥0 = {0,1,2,…} and P = {positive squares}

P = {1, 4, 9, 16, 25, …}
f(x) = (x+1)2

Is f one-to-one?
Yes

Is f onto?
Yes

Therefore |ℤ≥0| = |P|



Given two infinite sets A and B, is there any 
way of determining if |A| = |B| or if |A| > |B|?

Yes!
Functional correspondence can show two 
infinite sets have the same number of 
elements
Diagonalization can show one infinite set 
has more elements than another

Comparing the Size of Infinite Sets



Countable Sets
Let ℕ = {1, 2, 3, …} the set of natural numbers
The set A is countable if …

• A is finite, or
• |A| = |ℕ|

Some example of countable sets
• Integers
• {x | x ∈ ℕ and (x mod 3) = 1}
• All positive primes

{0,-1, 1,-2, 2,-3, 3, …}
{1,4,7,10,…}

{2,3,5,7,11,…}



The Positive Rational Numbers

Is Q = {m / n | m,n ∈ ℕ} countable?
Yes

1/1 1/2 1/3 1/4 1/5
2/1 2/2 2/3 2/4 2/5
3/1 3/2 3/3 3/4 3/5
4/1 4/2 4/3 4/4 4/5
5/1 5/2 5/3 5/4 5/5

Etc…

m/n 



Is ℝ+ (the set of positive real numbers) countable?
No!

n f(n)

1 1.56439…

2 3.23891…

3 7.42210…

4 2.22266…

5 0.16982…

1.56439…

3.23891…

7.42210…

2.22266…

0.16982…

The Real Numbers

X = 4.1337…

Diagonalization



The Real Numbers
The set of real numbers ℝ is uncountable.

Proof by contradiction using diagonalization.
Assume that a correspondence ƒ exists between 
ℕ and ℝ.
Find an x in ℝ that is not paired with anything in ℕ.
Construct such an x by choosing each digit of x to 
make x different from one of the real numbers that is 
paired with an element of ℕ, to ensure that x≠ƒ(n) ∀n.
We will construct x to be between 0 and 1, so all 
significant digits are part of the fractional part 
following the decimal point.



The Real Numbers
The set of real numbers ℝ is uncountable.

To ensure that x≠ƒ(1) we choose the first digit of x to 
be anything other than the first fractional digit of ƒ(1).  
Note that we have a choice of 9 other digits.
To ensure that x≠ƒ(k) we choose the kth digit of x to 
be anything other than the kth digit of ƒ(k).
We continue down the diagonal of a table of ƒ(n) 
values.
We have constructed x so that if is not ƒ(n) for any n, 
because it differs from ƒ(n) in the nth fractional digit.
Thus we have a contradiction, since x is not paired 
with a number in ℕ.

The set of real numbers ℝ is uncountable.



The Real Numbers
Is ℝ+ (the set of positive real numbers) countable?

No!

n f(n)

1 0.156439…

2 0.323891…

3 0.742210…

4 0.222266…

5 0.016982…

X = 0.41337… 

Diagonalization



The Set of All Infinite Binary Strings
Is the set of all (infinite) binary strings 
countable?

• No
• Diagonalization also works to prove this is not 

countable
n f(n)
1 1 0 0 1 0 …

2 0 1 1 0 1 …

3 1 1 0 1 1 …

4 1 0 0 1 1 …

5 0 1 1 1 0 …

X ＝ 0 0 1 0 1 …



The Set of All Infinite Binary Strings
Is the set of all (infinite) binary strings 
countable?

• No
• Diagonalization also works to prove this is not 

countable

On the other hand, the set of finite length 
binary strings is countable!

• Let xb be the binary representation of x

• f(x) = xb is a 1-to-1 and onto function from ℕ to 
the set of finite binary strings

9b = 1001



The Set of All Binary Strings
Is the set of all binary strings countable?

• No
• Diagonalization works to prove this is not 

countable

The set of finite length binary strings is 
countable!

• Let xb be the binary representation of x

• f(x) = xb is a 1-to-1 and onto function from ℕ to 
the set of finite binary strings



Is the Set of All Languages in Σ* Countable?

No
This set has the same cardinality as the set of all 
infinite binary strings

Σ* = { ε, a, b, aa, ab, ba, bb, aaa, aab, …}

A  = {    a,           ab,             aaa,        … }
χA =   0  1  0   0    1    0    0      1      0  …

The set of all languages in Σ* is not countable



Σ* vs. Languages in Σ*
The set Σ* is countable

• Let |Σ| = n
• Every string in Σ* can be associated with a 

unique number, y, in base‑(n+1)
• E.g., if Σ = {a, b, c}, we can associate the string 

acba with the value 1×43+3×42+2×41+1×40 = 121
• Let f(x) be the string associated with x

The set of all languages in Σ* is not countable
• It is the power set of Σ*



Is the Set of All TM’s Countable?
Yes
Every Turing machine can be represented 
by a finite length string, so the set of all 
Turing machines is countable

Theorem:  Some languages are not 
Turing‑recognizable

Proof:  There are more languages than 
there are Turing machines



Some Languages Not Turing-recognizable

Theorem:  Some languages are not 
Turing‑recognizable

Proof:  There are more languages than 
there are Turing machines

The set of all Turing machines is countable
The set of all languages is not countable



Undecidability of ATM

Theorem:  ATM is undecidable

Proof: (By Contradiction)  
Assume ATM is decidable and let H be a 
decider for ATM

H(<M,w>) = { accept  if M accepts w
reject    if M does not accept w

H is a decider for ATM



Undecidability of ATM (continued)

Consider the TM D that submits the string 
<M> as input to the TM M

D = “On input <M>, where M is a TM:
 Run H on input <M,<M>>
 If H accepts <M,<M>>, reject
 If H rejects <M,<M>>, accept

Ø Since H is a decider, 
it must accept or reject

Ø Therefore, D is a decider as well  

H is a decider for ATM



Undecidability of ATM (continued)

What happens if D’s input is <D>?

D(<D>) = {
D cannot exist!
Therefore, H cannot exist

which is a contradiction
Thus ATM is undecidable

reject  if D accepts <D>
accept  if D does not accept <D>



Undecidability of ATM (Review)

Assume H decides ATM

• H(<M,w>) = accept if TM M accepts w, 
reject otherwise

Define D using H
• D(<M>) returns opposite of H(<M,<M>>)

Consider D(<D>)
• D accepts <D> if and only if D rejects <D>

!



Undecidability of ATM (Review)

Assume H decides ATM

• H(<M,w>) = accept if M accepts w
• H(<M,w>) = reject if M rejects w
• H(<M,<M>>) = reject if M rejects <M>

Define D using H
• D(<M>) = accept if H(<M,<M>>) = reject
• D(<M>) = accept if M rejects <M>
• D(<M>) = reject if M accepts <M>

Consider D(<D>)
• D(<D>) = accept if D rejects <D>
• D accepts <D>  if and only if  D rejects <D>



Undecidability of ATM (Review)

Assume H decides ATM

• H(<M,w>) = accept if M accepts w
• H(<M,w>) = reject if M rejects w
• H(<M,<M>>) = reject if M rejects <M>

Define D using H
• D(<M>) = accept if H(<M,<M>>) = reject
• D(<M>) = accept if M rejects <M>
• D(<M>) = reject if M accepts <M>

Consider D(<D>)
• D(<D>) = accept if D rejects <D>
• D accepts <D>  if and only if  D rejects <D>

CONTRADICTIONATM is not decidable



What about ATM?
What can we know about the complement of ATM?

Can comp(ATM) be decidable?

Can comp(ATM) be recognizable?

We know that ATM is Turing-recognizable.

What does it mean for both a language and its 
complement to both be Turing-recognizable?



Undecidable Languages

Turing 
recognizable

Co-Turing 
recognizableDecidable



Coming Up
Proving a Language is Undecidable

• Use proof by contradiction
• Show that if a language L is decidable, 

it could be used to decide another language 
already known to be undecidable


