
 
Introduction to the  

Theory of Computation

Set 3 — Regular Languages (2)

q1 q2 q30 0

0,1

1

1

M1
1

q1’ q2’ q3’1 0

0
0

M2

1

q1 q2 q30 0

0,1

1

1

1

q1’ q2’ q3’1 0

0
0

1

ε

Can jump to q1’ nondeterministically

Example

Find M such that L(M) = L(M1) • L(M2)

Nondeterministic Finite Automaton (NFA)

DFA NFA
Exactly one arrow exiting

each node for each symbol of
the alphabet

Number of exiting arrows can
be anything from 0 to the

number of nodes

Each arrow is labeled only
with characters of the

alphabet

Arrows may also be labeled
with an empty string, ε

Each string reaches exactly
one state at the end of the

input

A string may reach several
different states at the end

of the input

DFA vs. NFA
Nondeterministic FADeterministic FA

Computing on an NFA
 For each symbol of the string, keep track of
all possible transitions in parallel
 When input ends, there may be several
possible ending states
• If at least one of the possibilities is an

accepting state, then the NFA accepts the
string

Example

 Does this NFA accept the string 001?

q1 q2 q30

0,1

1

1

ε
1

0

From state(s) Input To state(s)

q1 0 q2, q3

q2, q3 0 q2, q3

q2, q3 1 q1, q3

Example
0,1

1 1

0 ε

1 0,1

Any string containing two 1’s separated by at
most one 0

Example

a

ε

b

Zero or more concatenations of the strings
aba and ab

a

ε

Example

Strings of any length containing at most three of
the symbols in Σ = {a, b, c, d}

ε

a, b, c

a, b, d

a, c, d

b, c, d

ε
ε

ε

The Utility of Non-Determinism
Strings of any length containing at most two of
the symbols in Σ = {a, b, c}

a, b

a, c

b, c

ε

ε

ε

NFA

c
a

b

b
c c

a

b
c

b
ca

b

a, b, c

a, c

b,c

a, ba

c

DFA

Nondeterministic Finite Automaton (NFA) 
[Formal Definition]

Q is a finite set of states
Σ is a (finite) alphabet
δ : Q × Σε → P (Q) is the transition function
δ maps to sets of states

q0 is the start state, and
F ⊆ Q is the set of accept states

A nondeterministic finite automaton is a
5-tuple (Q,Σ,δ,q0,F), where

Equivalence of DFAs and NFAs
Theorem: Every nondeterministic finite

automaton has an equivalent
deterministic finite automaton

• Both FAs accept the same language

 Proof method
• Construction
• Similar to method used for recognizing strings

• Follow all paths in parallel where states represent
parallel paths

Proof Idea
 Given NFA M1=(Q,Σ,δ,q0,F) construct DFA
M2=(Q’,Σ,δ’,q0’,F’) with L(M1)=L(M2)

 Intuition
• Recall δ:Q×Σε→P (Q)
• Our DFA’s transition function will generate

paths within P (Q)
 δ’: P (Q)×Σ→P (Q)

Defining M2
 Determine Q’, q0’, and F’

• Q’ = P (Q)

• q0’ = {q0}

• F’ = {R ∈ Q’ | R ∩ F ≠ ∅}
R contains at least one of M1’s accept states

 Defining δ’

(ignoring ε jumps for now)

δ′ (R, a) = ⋃
r∈R

δ(r, a)

Collaborative Exercise
 For each NFA

• Informally describe the behavior of the NFA
• Construct a DFA accepting the same language

NFA 1

ε

ε

1

0

1

0

1
1

0
0

All strings containing an even number of 0’s
or an even number of 1’s

Σ = {0,1}

NFA 2

0,ε
0 1 1 0

0,ε 0,ε 0,ε

All prefixes of the string 0110

Proper prefixes may be followed by a 0

Σ = {0,1}

All strings in which
the number of zeros is divisible by 2 or 3

NFA 3

ε

ε

1

1

1

1

0
0

0

0

1

0

Σ = {0,1}

NFA 4

1 0,1 0,1

0,1

All strings that have a 1 in one of the last
three positions

ε

ε

Σ = {0,1}

NFA 5

0

1

0

1

All strings with alternating 0’s and 1’s that
start with a 0

Σ = {0,1}

NFA 6

1

1

1

0

0

0

ε

All strings containing either zero 1’s or
three or more 1’s

Σ = {0,1}

Closure of NFA’s Under
Regular Operations

 Recall the following are the
regular operators
• Union
• Concatenation
• Kleene star

Union is a Regular Operation
Theorem: The class of regular

languages is closed under the union
operation

Proof approach: Assume A1 and A2 are
both regular languages with A1=L(M1)
and A2=L(M2) then create an NFA M
such that L(M) = A1∪A2

Method: Proof by construction

M

Construct M from M1 and M2

M1

M2

ε

ε

Concatenation is a regular operation
Theorem: The class of regular

languages is closed under the
concatenation operation

Proof approach: Assume A1 and A2 are
both regular languages with A1=L(M1)
and A2=L(M2) then create an NFA M
such that L(M) = A1•A2

Method: Proof by construction

M

Construct M from M1 and M2

M1

M2

ε ε

Kleene Star Is a Regular Operation
Theorem: The class of regular

languages is closed under the
Kleene star operation

Proof approach: Assume A1 is a
regular language with A1=L(M1) and
create an NFA M such that L(M) = A1*

Method: Proof by construction

M

Construct M from M1

M1

ε
ε

ε

Regular Languages
 So far we have had to describe languages
either with finite automata or with words
• Potentially clumsy or imprecise

 Two other formal expressions that describe
regular languages

– Regular Grammars
– Regular Expressions

Formal Grammars
 Formal grammars contain a set of
production rules for strings in a language.
 The rules describe how to form valid strings

under the language’s alphabet.

 Example: {S→abA, S→a, A→aA, A→b}

Formal Grammars
 A formal grammar includes a set of rules
for rewriting strings and a specified start
symbol from which rewriting starts.
 The set of variables, also known as non-
terminals, will be written using capital
letters to be consistent with JFLAP.
 One of the variables is distinguished as the
start symbol.
 The members of the alphabet Σ are also
known as terminals.

Formal Grammars

 Σ = {a, b} (a.k.a terminals)  
variables = {S, A, B} (a.k.a non-terminals)  

start symbol = S 
rules = {S→abA, S→a, A→aA, A→b}

 Example:

 A derivation of the string abaab:

 S → abA → abaA → abaaA → abaab

Regular Grammars
Regular grammars are another
representation of regular languages.

• They are equivalent in power to DFAs
and NFAs.

A right-linear grammar is a type of regular
grammar.

 In a right-linear grammar all rules must have
at most one variable in the right-hand side
and that variable must be to the right of any
terminals.

 In a right-linear grammar all rules must have
at most one variable in the right-hand side
and that variable must be to the right of any
terminals.

Regular Grammars
 In a right-linear grammar all rules must have

at most one variable in the right-hand side and that
variable must be to the right of any terminals.

 Example:

 In a right-linear grammar all rules must have
at most one variable in the right-hand side
and that variable must be to the right of any
terminals.

 Σ = {0, 1}  
variables = {S, X, Y}  

start symbol = S 
rules = {S→0X, 

S→1X, 
S→0Y,  
X→01Y,  
Y→1X, 
Y→λ }

Regular Expressions (RE’s)
 Thus far we have described languages
using finite automata, English words, and
regular grammars

 There is another precise and parsimonious
expression to describe regular languages

– Example: All strings with at least one 1
becomes Σ*• {1}• Σ*, or more simply Σ*1Σ*

Where have you seen RE’s?
 Filename matching

ls *.txt rm data1??.bak

 Grep, Awk, Sed, …
 Search expressions within text editors
 Perl, Java, C++, …

RE Inductive Definition
R is a regular expression if R is
1. a for some a ∈ Σ
2. ε
3. ∅

4. R1 ∪ R2 where R1 and R2 are both
regular expressions

5. R1•R2 where R1 and R2 are both
regular expressions (written R1R2)

6. (R1*) where R1 is a regular expression

Convention:
Abuse of notation.

These should be sets!

RE Examples
0*10*10*

{w | w contains exactly two 1’s}

Σ*11Σ*

{w | w contains two consecutive 1’s}

Σ*1(0∪ε)1Σ*

{w | w contains two 1’s separated by at most one 0}

(0∪ε)(1∪ε)
{0, 1, 01, ε}

Σ = {0,1}

 When appearing in regular expressions,
union is often read as “or”.

 (a∪b) ≡ “a or b”

 JFLAP uses the plus symbol for union
 aba(b∪a)b ≡ aba(b+a)b

RE’s and Regular Languages
Theorem: A language is regular if and only

if some regular expression describes it.
Every regular expression has a

corresponding DFA and vice versa.

RE’s and Regular Languages
Lemma:  

If a language is described by a regular
expression, then it is regular.

• Find an NFA corresponding to any regular
expression

• Use inductive definition of RE’s

1. R=a for some a∈Σ

aq1 q2

N = {{q1,q2},Σ,δ,q1,{q2}}
where δ(q1,a)={q2} and  
δ(r,x)=∅ whenever r=q2 or x≠a

2. R=ε

q1

N = {{q1},Σ,δ,q1,{q1}}  
where δ(q1,x)=∅ for all x

3. R=∅

q1

N = {{q1},Σ,δ,q1,∅}  
where δ(q1,x)=∅ for all x

Remaining Constructions
 R = R1∪R2

 R = R1•R2

 R = R1*

 These were all shown to be regular
operators
• We know we can construct NFA’s for R

provided they exist for R1 and R2

Example 1

0R1 = 0 R3 = 0∪1 0

1
ε

ε

1

R = Σ1

0

1

ε
ε ε

ε

1R2 = 1

R = Σ1
R = (0∪1)1

Σ = {0,1}

Example 2

 R = 1(0∪ε)Σ*

1R1 = 1

R2 = 0∪ε 0

ε
ε
ε

0,1R3 = Σ*

ε

R = 1(0∪ε)Σ*

1
0

ε
ε
ε

ε 0,1

εε

ε

Σ = {0,1}

Equivalence of RE’s and DFA’s
 We have seen that every RE has a
corresponding NFA
• Therefore, every RE has a corresponding DFA
• Thus every RE describes a regular language

 We need to show that every regular
language can be described by a RE
 Begin by showing how to convert all DFA’s
into GNFA’s
• Generalized Nondeterministic Finite Automata

