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Nondeterministic Finite Automaton (NFA)



DFA NFA
Exactly one arrow exiting 

each node for each symbol of 
the alphabet

Number of exiting arrows can 
be anything from 0 to the 

number of nodes

Each arrow is labeled only 
with characters of the 

alphabet

Arrows may also be labeled 
with an empty string, ε

Each string reaches exactly 
one state at the end of the 

input

A string may reach several 
different states at the end 

of the input

DFA vs. NFA
Nondeterministic FADeterministic FA



Computing on an NFA 
 For each symbol of the string, keep track of 
all possible transitions in parallel
 When input ends, there may be several 
possible ending states
• If at least one of the possibilities is an 

accepting state, then the NFA accepts the 
string



Example

 Does this NFA accept the string 001?
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From state(s) Input To state(s)

q1 0 q2, q3
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q2, q3 1 q1, q3



Example
0,1

1 1

0 ε

1 0,1

Any string containing two 1’s separated by at 
most one 0



Example
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aba and ab
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Example

Strings of any length containing at most three of 
the symbols in Σ = {a, b, c, d}
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The Utility of Non-Determinism
Strings of any length containing at most two of 
the symbols in Σ = {a, b, c}
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Nondeterministic Finite Automaton (NFA) 
[Formal Definition]

Q is a finite set of states
Σ is a (finite) alphabet
δ : Q × Σε → P (Q) is the transition function
δ maps to sets of states

q0 is the start state, and
F ⊆ Q is the set of accept states

A nondeterministic finite automaton is a 
5-tuple (Q,Σ,δ,q0,F), where



Equivalence of DFAs and NFAs
Theorem: Every nondeterministic finite 

automaton has an equivalent 
deterministic finite automaton

• Both FAs accept the same language

 Proof method
• Construction
• Similar to method used for recognizing strings

• Follow all paths in parallel where states represent 
parallel paths



Proof Idea
 Given NFA M1=(Q,Σ,δ,q0,F) construct DFA 
M2=(Q’,Σ,δ’,q0’,F’) with L(M1)=L(M2)

 Intuition
• Recall δ:Q×Σε→P (Q)
• Our DFA’s transition function will generate 

paths within P (Q) 
 δ’: P (Q)×Σ→P (Q)



Defining M2 
 Determine Q’, q0’, and F’

• Q’ = P (Q)

• q0’ = {q0}

• F’ = {R ∈ Q’ | R ∩ F ≠ ∅}
R contains at least one of M1’s accept states

 Defining δ’

 

(ignoring ε jumps for now)

δ′ (R, a) = ⋃
r∈R

δ(r, a)



Collaborative Exercise
 For each NFA

• Informally describe the behavior of the NFA
• Construct a DFA accepting the same language
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All strings containing an even number of 0’s 
or an even number of 1’s

Σ = {0,1}



NFA 2

0,ε
0 1 1 0

0,ε 0,ε 0,ε

All prefixes of the string 0110

Proper prefixes may be followed by a 0

Σ = {0,1}



All strings in which
the number of zeros is divisible by 2 or 3
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NFA 4

1 0,1 0,1
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All strings that have a 1 in one of the last 
three positions
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NFA 5
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All strings with alternating 0’s and 1’s that 
start with a 0

Σ = {0,1}



NFA 6

1
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0
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All strings containing either zero 1’s or 
three or more 1’s

Σ = {0,1}



Closure of NFA’s Under 
Regular Operations

 Recall the following are the 
regular operators
• Union
• Concatenation
• Kleene star



Union is a Regular Operation
Theorem:  The class of regular 

languages is closed under the union 
operation

Proof approach:  Assume A1 and A2 are 
both regular languages with A1=L(M1) 
and A2=L(M2) then create an NFA M 
such that L(M) = A1∪A2

Method:  Proof by construction
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Concatenation is a regular operation
Theorem:  The class of regular 

languages is closed under the 
concatenation operation

Proof approach:  Assume A1 and A2 are 
both regular languages with A1=L(M1) 
and A2=L(M2) then create an NFA M 
such that L(M) = A1•A2

Method:  Proof by construction
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Kleene Star Is a Regular Operation
Theorem:  The class of regular 

languages is closed under the 
Kleene star operation

Proof approach:  Assume A1 is a 
regular language with A1=L(M1) and 
create an NFA M such that L(M) = A1*

Method:  Proof by construction
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ε
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ε



Regular Languages
 So far we have had to describe languages 
either with finite automata or with words
• Potentially clumsy or imprecise

 Two other formal expressions that describe 
regular languages

– Regular Grammars
– Regular Expressions



Formal Grammars
 Formal grammars contain a set of 
production rules for strings in a language.
 The rules describe how to form valid strings 

under the language’s alphabet.

 Example:   {S→abA, S→a, A→aA, A→b}



Formal Grammars
 A formal grammar includes a set of rules 
for rewriting strings and a specified start 
symbol from which rewriting starts.
 The set of variables, also known as non-
terminals, will be written using capital 
letters to be consistent with JFLAP.
 One of the variables is distinguished as the 
start symbol.
 The members of the alphabet Σ are also 
known as terminals.



Formal Grammars

 Σ = {a, b} (a.k.a terminals)  
variables = {S, A, B} (a.k.a non-terminals)  

start symbol = S 
rules = {S→abA, S→a, A→aA, A→b}

 Example:

 A derivation of the string abaab:

 S → abA → abaA → abaaA → abaab



Regular Grammars
Regular grammars are another 
representation of regular languages.

• They are equivalent in power to DFAs 
and NFAs.

A right-linear grammar is a type of regular 
grammar.

 In a right-linear grammar all rules must have 
at most one variable in the right-hand side 
and that variable must be to the right of any 
terminals.

 In a right-linear grammar all rules must have 
at most one variable in the right-hand side 
and that variable must be to the right of any 
terminals.



Regular Grammars
 In a right-linear grammar all rules must have 

at most one variable in the right-hand side and that 
variable must be to the right of any terminals.

 Example:

 In a right-linear grammar all rules must have 
at most one variable in the right-hand side 
and that variable must be to the right of any 
terminals.

 Σ = {0, 1}  
variables = {S, X, Y}  

start symbol = S 
rules = {S→0X, 

S→1X, 
S→0Y,  
X→01Y,  
Y→1X, 
Y→λ }



Regular Expressions (RE’s)
 Thus far we have described languages 
using finite automata, English words, and 
regular grammars

 There is another precise and parsimonious 
expression to describe regular languages

– Example: All strings with at least one 1 
becomes Σ*• {1}• Σ*, or more simply Σ*1Σ*



Where have you seen RE’s?
 Filename matching

ls *.txt       rm data1??.bak

 Grep, Awk, Sed, …
 Search expressions within text editors
 Perl, Java, C++, …



RE Inductive Definition
R is a regular expression if R is
1. a  for some a ∈ Σ
2. ε
3. ∅

4. R1 ∪ R2 where R1 and R2 are both 
regular expressions

5. R1•R2 where R1 and R2 are both 
regular expressions (written R1R2)

6. (R1*) where R1 is a regular expression

Convention: 
Abuse of notation. 

These should be sets!



RE Examples
0*10*10*

{w | w contains exactly two 1’s}

Σ*11Σ*

{w | w contains two consecutive 1’s}

Σ*1(0∪ε)1Σ*

{w | w contains two 1’s separated by at most one 0}

(0∪ε)(1∪ε)
{0, 1, 01, ε}

Σ = {0,1}

 When appearing in regular expressions, 
union is often read as “or”.

 (a∪b) ≡ “a or b” 

 JFLAP uses the plus symbol for union
 aba(b∪a)b ≡ aba(b+a)b



RE’s and Regular Languages
Theorem:  A language is regular if and only 

if some regular expression describes it.
Every regular expression has a 

corresponding DFA and vice versa.



RE’s and Regular Languages
Lemma:  

If a language is described by a regular 
expression, then it is regular.

• Find an NFA corresponding to any regular 
expression

• Use inductive definition of RE’s



1. R=a for some a∈Σ

aq1 q2

N = {{q1,q2},Σ,δ,q1,{q2}} 
where δ(q1,a)={q2} and  
δ(r,x)=∅ whenever r=q2 or x≠a



2. R=ε

q1

N = {{q1},Σ,δ,q1,{q1}}  
where δ(q1,x)=∅ for all x



3. R=∅

q1

N = {{q1},Σ,δ,q1,∅}  
where δ(q1,x)=∅ for all x



Remaining Constructions
 R = R1∪R2  

 R = R1•R2

 R = R1*

 These were all shown to be regular 
operators
• We know we can construct NFA’s for R 

provided they exist for R1 and R2



Example 1

0R1 = 0 R3 = 0∪1 0
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R = Σ1

0
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1R2 = 1

R = Σ1
R = (0∪1)1

Σ = {0,1}



Example 2

 R = 1(0∪ε)Σ*

1R1 = 1

R2 = 0∪ε 0

ε
ε
ε

0,1R3 = Σ*

ε

R = 1(0∪ε)Σ*

1
0

ε
ε
ε

ε 0,1

εε

ε

Σ = {0,1}



Equivalence of RE’s and DFA’s
 We have seen that every RE has a 
corresponding NFA
• Therefore, every RE has a corresponding DFA
• Thus every RE describes a regular language

 We need to show that every regular 
language can be described by a RE
 Begin by showing how to convert all DFA’s 
into GNFA’s
• Generalized Nondeterministic Finite Automata


